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Exact solutions of the problem of the pressure distribution around an ideal hydraulic fracture are derived. The crack propagates 
in a permeable porous medium following a square-root growth law. The case of the penetration of the fracturing fluid into a 
reservoir is also considered. 0 1598 Elsevier Science Ltd. All rights reserved. 

In studies of hydraulic fracturing the need arises to predict the transient fluid pressure field around a 
propagating hydrofracture [l, 21. Assuming the reservoir rock and fluid to be elastically deformable 
and that the fluid flow in the reservoir outside the crack obeys Darcy’s law, the pressure distribution is 
described by the heat conduction (“piezoconduction”) equation [3,4] 

(0.1) 

where the piezoconductivity k is of the order of &-lo4 cm2/s. ‘Ib a first approzimation the crack itself 
can be considered as an ideal one. Then it is a thin domain (“a surface”) over which the pressure p” is 
specified, which is different from the initial reservoir pressure po. The problem is to determine the 
fracture growth (propagation) law and to obtain the perturbation of the reservoir pressure field caused 
by the crack propagiation, and, of particular importance for analysing the hydraulic fracturing process, 
the distribution of the fracturing fluid leakage density (the seepage rate) over the crack surface. 
Generally, this problem must be solved numerically. 

In this paper we consider several special cases (including those taking into account the displacement 
of the reservoir fluid by the fracturing fluid) which admit of a self-similar formulation and an 
exact solution and hence can be investigated fairly thoroughly. In particular, the solution of the 
problem of the propagation of a plane “ideal” crack b. = const) in a permeable reservoir is obtained. 
The solutions may Iprove to be useful by themselves, and also for testing more universal numerical 
algorithms. 

1. FORMULATION OF THE PROBLEM 

It is required to find a solution of Eq. (0.1) in the domain outside the crack, assuming that a 
constant pressure p” is specified at the crack surface, while the pressure outside the crack is initially 
equal to the reservoir pressure p. = const, po c p”. The crack is modelled by a segment 1x1 s Z(t), 
y = 0 (case A, plane parallel flow) or by an infinitely thin disc, r d r(t), z = 0 (case B, azisymmetric 
flow). 

Case A corresponds to the propagation of a long vertical crack of rectangular shape; case B 
corresponds to the growth of a horizontal circular crack in a very thick reservoir. 

Hence, we have the following problems 
problem A: 

$:k(gJ+$), -mcx<oo, y30 

. 
fJ(x,y.O)=p(p p(x,O,t)=pO, lxlcz(t); ilp/&Y(x.O,t)=O, Ixl>Z(t) 
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problem B: 

p(r,z,O)= PO, p(r,O,r)= p”, rGf(t); aphk(r,o,t)=o, r>f(t) 

Here the obvious symmetry of the problem about the crack plane has been used. owing to this the 
derivative of the pressure in a direction normal to the crack plane (“the flux”) vanishes along the 
continuation of the crack. 

It can be seen that the solutions of problemsA and B are self-similar if the crack boundary propagates 
following a square-root law 

L(f) = A, c = const 

Letting 

x=csJ;, y=qJ;, r=cpG, z=c<J; 

P=(P~-P~M~,~~)+P~ if P=(~~-Po.)W~C)+~O. 

we obtain the problems forf(5, rl) and cp(p, <), respectively, which can be represented in a single form 

s($+$)+(*x+;)$+*+o, &=4Kc-* (l-1) 

aqx,o)=i, IXISI; a/aY(x,0)=0, IXI>~ 
@(X, Y) + 0, (X2 + Y*)i’* + Qo 

@ * 
, n=O 

= (9, n=l’ I x= 5, n=O y= rl, n=O 
{ p, n=l’ { c, n=l 

Here n = 0 for a plane crack, and n = 1 for an axisymmetric one. 

2. THE SOLUTION OF PROBLEM (1.1) 
In view of the obvious symmetry about the axes x = 0 and y = 0 we will solve the mixed 

boundary-value problem (1.1) in the domain (0 d X < -) u (0 c Y < -). We introduce elliptic coordinates 
(u, v): x = chucosv, Y = shusinv instead of (X, Y) coordinates; the respective coordinate lines form a 
system of confocal ellipses and hyperboles with foci at the points (-1,O) and (1,O). This transformation 
mapsthedomain(O~X~~)U(OsY~~)intothedomain(Ocu~~)~(O~vclr/2). 

In the elliptic coordinates the mixed boundary-value problem (1.1) reduces to the standard boundary- 
value problem in a half-strip 

f$+$) +(sh2.+Enthu)z-(sin2u +mtgv)g=O G-1) 

V(O,u)=l, O<V SE- 2, g(u,o)=g(u,;)= 0, o<u, \Y(u,v)+O, u-b- (2.2) 

where Y(u, v) = @(X, Y). 
We will solve the problem using the method of separation of variables. The general solution of Eq.. 

(2.11), satisfying the symmetry conditions, then has the form 

k=O (2.3) 

where V,(u) and Vk(v) are solutions of the equations 
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&lJ;+(sh2u+~nthu)U; + k2U, ~0, (&WV;)‘- k2aV’ = 0, o = cod’v exp(cosv /(2E)) 

which satisfy the conditions 

v;(o)=v;(x/2)=0, U,(u+=)+O 

The functions Vk form a complete orthonormal set of functions with weight CJI over the segment [O,rr/2]. 
We multiply the boundary condition at the crack surface (the first condition (2.2)) by ce’vR and integrate 
from 0 to 7r/2. We obtain 

Uo(0)= 1, Uk=O, k>O. 

Henceforth we will use the notation U = Us(u), V = V,(v) (&(v) = 0 for k 5 1). The required solution 
is found from the boundary-value problem 

ELI” + (sh2u + Enthu)U’ = 0; U(0) = 1, U(u -_) cm) + 0 (2.4) 

The solution of (2.4) is expressed as 

U(u) = A (u E) 
Lr A,(U,E)= jfexp 
A,(O,E) 

(2.5) 

The normalization constants A,,(O, E) can be expressed in terms of the McDonald functions h(z) 
and&(z) and the modified Struve functions L,(z) and L,(z) of the zeroth and first orders [S] for a plane 
crack (n = 0) and an axisymmetric crack (n = 1) 

Thus, the solution of boundary-value problem (2.4) is given by the expression 

@(X,Y)= ‘P(u,v >= U(u)= A,(u,~)lh,(0,~) 

u = arsh&, v = arcsin&, 

A* =(fA,+,/&?)/2, Ao=X2+Y2-I 

(2.6) 

Expressing the derivative &IVZlY in elliptic coordinates taking into account equality (2.3), we find the 
leakage distribution over the crack edges and the total amount of fluid which penetrates from the fracture 
into the reservoir per unit time (the leakage flow rate) corresponding to solution (2.6) 

E,,(E) 
y=o,o<x<, = -sinu 

exp(-1 / (2E)) 

A,(O,E) 
(2.7) 

It follows from the first relation of (2.7) that the distribution of the normal derivative of the pressure 
differs only by a normalizing factor from the distribution for a non-propagating crack, which is well 
known and corresponds to the point where the type of boundary conditions changes (the crack tip). 

For small rates of crack propagation E S 1 (c 4 l), we have 

~o(E)-l/~n(4&/Y), 2,(E)-2/X (2.8) 
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Here y = exp(C) and C = 0.7772 is Euler’s constant. Equation (2.8) shows that the normal derivative 
of the pressure at the edges of a plane crack vanishes as E + 00. This is explained by the non-existence 
of a steady-state solution, bounded at infinity, corresponding to the flow from a crack in the plane case. 
One must either introduce a finite system size or take into account the transient nature of the process. 

In the other limiting case, namely that of a high crack propagation rate, E 4 1 (c % l), we have both 
for a plane crack (n = 0) and an axisymmetric crack (n = 1) 

This means the propagation of a self-similar pressure wave along the normal to the crack 

3. TAKING INTO ACCOUNT RESERVOIR FLUID DISPLACEMENT BY 
THE FRACTURING FLUID 

Up to now it was implicitly assumed that the fracturing fluid and reservoir fluid are the same. Usually, 
however, the fracturing fluid has much greater viscosity than the reservoir fluid, and, on penetrating 
into the reservoir, it considerably changes the flow resistance in the vicinity of the crack We will now 
consider the case of the displacement of the reservoir fluid by the fracturing fluid in the piston 
displacement approximation. For such flows both the equations and boundary conditions are identical 
with (1.1). However, the coefficient E instead of being a constant is now a piecewiseconstant function 

E= E, =(2&w* (in the fracturing domain) 

x2 = (26 / c)*. (in the fracturing domain) (3-I) 

The pressure and the normal component of the flux must be continuous at the domain boundary. 
Generally speaking, this formulation leads to a complicated non-linear problem of the interaction 

of kinematic and heat waves. However, the simplicity of the solution guessed above enables us to hope 
that this problem also has a solution with an interface in the form of a growing ellipse, u = u. = const, 
where 

&(K) = 
‘1 =(2&/c)*, Usuo 

E2 =(2&&92, u > K,, 
(3.2) 

0 0.S f 

% 

Fig. 1. 
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It turns out that such a solution does in fact exist. It is given by the expression 

@(X, Y) = Y(n,u ) = U(u) = A,(U,&)l A,(O,&) (3.3) 

Solving the corresponding boundary-value problem (l.l), taking Eqs (3.2) into account by the 
separation-of-variables technique (cf. Section 2), we get 

Wu)=A,(U,E)IA,(O,E) (3.4) 

The parameter uo, which characterizes the interface between the fracturing fluid and the reservoir 
fluid, can be determined from the balance relation 

2(:!x)“jIUt~(X,t)dx(it=tnS; uL(.x,t)=-- 
2k” +(x,O,t) 

1x1s l(r) (3.5) 
00 P ay ’ 

Here v& t) is the leakage rate of the fracturing fluid from the fracture into reservoir, m is the porosity 
and k” is the permeability of the reservoir rock, u is the fracturing fluid viscosity and S is the area of 
the domain occupied by the fracturing fluid. 

Equation (3.5) can be expressed in terms of dimensionless variables as 

exp(-1 / 2~~ )) 
sh(2uo)ch”(2uo)’ 

i3=po(K;‘+K;‘) (3.6) 

where Kp and K,,, are the bulk moduli of the fracturing fluid and of the porous medium, respectively. 
Thus, the parameter us = UO@, Ed, &r) is a root of the transcendental equation (3.6). The corresponding 

dependence is shown in Fig. 1 for el = 1 and n = 0. 
tiis research was par-Gaily supported by the Russian Foundation for Basic Research (96-01-0748). 

REFERENCES 

NOLTE, K. G. and SMITH, M. B., Interpretation of fracturing processes. 1. Petrol. 7’echrwl., 1981,33,9,1767-1775. 
ECONOMIDES, M. J. and NOLTE, K. G. (eds), Reservoir Stimdation, Schlumberger Educat. Services, Houston, 1987. 
SHCHELKACHEV, V N., Development of Oil- and Water-bearing Reservoirs in an ELutic Regime. Gostoptekhizdat, Moscow, 
1959. 
BARENBLAIT, G. I., ENTOY V M. and RYZIUK, K M., 27~ Ffow of Liquids and Gases in NatumlReservoim Nedra, Moscow, 
1984. 
ABRAMOWITZ, M. and STEGUN, I. A., Handbook of Mathematical Functions. Wiley, New York, 1964. 

Trandated by the authors 


